Magnetic quantum tunneling: insights from simple molecule-based magnets.

نویسندگان

  • Stephen Hill
  • Saiti Datta
  • Junjie Liu
  • Ross Inglis
  • Constantinos J Milios
  • Patrick L Feng
  • John J Henderson
  • Enrique del Barco
  • Euan K Brechin
  • David N Hendrickson
چکیده

This perspectives article takes a broad view of the current understanding of magnetic bistability and magnetic quantum tunneling in single-molecule magnets (SMMs), focusing on three families of relatively simple, low-nuclearity transition metal clusters: spin S = 4 Ni(II)(4), Mn(III)(3) (S = 2 and 6) and Mn(III)(6) (S = 4 and 12). The Mn(III) complexes are related by the fact that they contain triangular Mn(III)(3) units in which the exchange may be switched from antiferromagnetic to ferromagnetic without significantly altering the coordination around the Mn(III) centers, thereby leaving the single-ion physics more-or-less unaltered. This allows for a detailed and systematic study of the way in which the individual-ion anisotropies project onto the molecular spin ground state in otherwise identical low- and high-spin molecules, thus providing unique insights into the key factors that control the quantum dynamics of SMMs, namely: (i) the height of the kinetic barrier to magnetization relaxation; and (ii) the transverse interactions that cause tunneling through this barrier. Numerical calculations are supported by an unprecedented experimental data set (17 different compounds), including very detailed spectroscopic information obtained from high-frequency electron paramagnetic resonance and low-temperature hysteresis measurements. Comparisons are made between the giant spin and multi-spin phenomenologies. The giant spin approach assumes the ground state spin, S, to be exact, enabling implementation of simple anisotropy projection techniques. This methodology provides a basic understanding of the concept of anisotropy dilution whereby the cluster anisotropy decreases as the total spin increases, resulting in a barrier that depends weakly on S. This partly explains why the record barrier for a SMM (86 K for Mn(6)) has barely increased in the 15 years since the first studies of Mn(12)-acetate, and why the tiny Mn(3) molecule can have a barrier approaching 60% of this record. Ultimately, the giant spin approach fails to capture all of the key physics, although it works remarkably well for the purely ferromagnetic cases. Nevertheless, diagonalization of the multi-spin Hamiltonian matrix is necessary in order to fully capture the interplay between exchange and local anisotropy, and the resultant spin-state mixing which ultimately gives rise to the tunneling matrix elements in the high symmetry SMMs (ferromagnetic Mn(3) and Ni(4)). The simplicity (low-nuclearity, high-symmetry, weak disorder, etc.) of the molecules highlighted in this study proves to be of crucial importance. Not only that, these simple molecules may be considered among the best SMMs: Mn(6) possesses the record anisotropy barrier, and Mn(3) is the first SMM to exhibit quantum tunneling selection rules that reflect the intrinsic symmetry of the molecule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant tunneling in truly axial symmetry Mn12 single-molecule magnets: sharp crossover between thermally assisted and pure quantum tunneling.

Magnetization measurements of a truly axial symmetry molecular nanomagnet with a spin ground state of S = 10 show resonant tunneling. This compound has the same magnetic anisotropy as but the molecules are better isolated and the crystals have less disorder and a higher symmetry. Hysteresis loop measurements at several temperatures reveal a well-resolved step fine structure which is due to leve...

متن کامل

Quantum-tunneling-induced Kondo effect in single molecular magnets.

We consider transport through a single-molecule magnet strongly coupled to metallic electrodes. We demonstrate that, for a half-integer spin of the molecule, electron and spin tunneling cooperate to produce both quantum tunneling of the magnetic moment and a Kondo effect in the linear conductance. The Kondo temperature depends sensitively on the ratio of the transverse and easy-axis anisotropie...

متن کامل

Level splittings in exchange-biased spin tunneling

The level splittings in a dimer with the antiferromagnetic coupling between two single-molecule magnets are calculated perturbatively for arbitrary spin. It is found that the exchange interaction between two single-molecule magnets plays an important role in the level splitting. The results are discussed in comparison with the recent experiment. 75.45.+j, 75.50.Xx, 75.50.Tt Typeset using REVTEX...

متن کامل

Quantum tunneling of two coupled single-molecular magnets

Two single-molecule magnets are coupled antiferromagnetically to form a supramolecule dimer. We study the coupling effect and tunneling process by means of the numerical exact diagonalization method, and apply them to the recently synthesized supramoleculer dimer [Mn4]2. The model parameters are calculated for the dimer based on the tunneling process. The absence of tunneling at zero field and ...

متن کامل

Resonant and Kondo tunneling through molecular magnets

Transport through molecular magnets is studied in the regime of strong coupling to the leads. We consider a resonant-tunneling model where the electron spin in a quantum dot or molecule is coupled to an additional local, anisotropic spin via exchange interaction. The two opposite regimes dominated by resonant tunneling and by Kondo transport, respectively, are considered. In the resonant-tunnel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 39 20  شماره 

صفحات  -

تاریخ انتشار 2010